JCVI: Global Features of the Pseudomonas putida KT2440 Genome Sequence
 
 
Section Banner

Publications

Citation

Weinel, C., Nelson, K. E., Tummler, B.

Global Features of the Pseudomonas putida KT2440 Genome Sequence

Environ Microbiol. 2002 Dec 01; 4(12): 809-18.

PubMed Citation

Abstract

The compositional bias of the G+C, di- and tetranucleotide contents in the 6 181 862 bp Pseudomonas putida KT2440genome was analysed in sliding windows of 4000 bp in steps of 1000 bp. The genome has a low GC skew (mean 0.066) between the leading and lagging strand. The values of GC contents (mean 61.6%) and of dinucleotide relative abundance exhibit skewed Gaussian distributions. The variance of tetranucleotide frequencies, which increases linearly with increasing GC content, shows two overlapping Gaussian distributions of genome sections with low (minor fraction) or high variance (major fraction). Eighty per cent of the chromosome shares similar GC contents and oligonucleotide bias, but 105 islands of 4000 bp or more show atypical GC contents and/or oligonucleotide signature. Almost all islands provide added value to the metabolic proficiency of P. putida as a saprophytic omnivore. Major features are the uptake and degradation of organic chemicals, ion transport and the synthesis and secretion of secondary metabolites. Other islands endow P. putida with determinants of resistance and defenceor with constituents and appendages of the cell wall. A total of 29 islands carry the signature of mobile elements such as phage, transposons, insertion sequence (IS) elements and group II introns, indicating recent acquisition by horizontal gene transfer. The largest gene carries the most unusual sequence that encodes a multirepeat threonine-rich surface adhesion protein. Among the housekeeping genes, only genes of the translational apparatus were located in segments with an atypical signature, suggesting that the synthesis of ribosomal proteins is uncoupled from the rapidly changing translational demands of the cell by the separate utilization of tRNA pools.