JCVI: Insights Into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-resistant Environmental Isolate E. coli SMS-3-5
 
 
Section Banner

Publications

Citation

Fricke, W. F., Wright, M. S., Lindell, A. H., Harkins, D. M., Baker-Austin, C., Ravel, J., Stepanauskas, R.

Insights Into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-resistant Environmental Isolate E. coli SMS-3-5

J Bacteriol. 2008 Aug 15; 190(20): 6779-94.

PubMed Citation

Abstract

The increasing occurrence of multidrug resistant pathogens of clinical and agricultural importance is a global public health concern. While antimicrobial use in human and veterinary medicine is known to contribute to the dissemination of antimicrobial resistance, the impact of microbial communities and mobile resistance genes from the environment in this process is not well understood. Isolated from an industrially polluted aquatic environment, E. coli SMS-3-5 is resistant to a record number of antimicrobial compounds from all major classes, including two front-line fluoroquinolones (ciprofloxacin and moxifloxacin) and in many cases at record-high concentrations. To gain insights into antimicrobial resistance in environmental bacterial populations, the genome of E. coli SMS-3-5 was sequenced and compared to the genome sequences of other E. coli strains. In addition, selected genetic loci from E. coli SMS-3-5 predicted to be involved in antimicrobial resistance were phenotypically characterized. Using recombinant vector clones from shotgun sequencing libraries, resistance to tetracycline, streptomycin and sulfonamide/trimethoprim was assigned to a single mosaic region on a 130 kb plasmid (pSMS35_130). The remaining plasmid backbone shows similarity to virulence plasmids from avian pathogenic E. coli (APEC) strains. Individual resistance gene cassettes from pSMS35_130 are conserved among resistant bacterial isolates from multiple phylogenetic and geographic sources. Resistance to quinolones was assigned to several chromosomal loci mostly encoding for transport systems that are also present in susceptible E. coli isolates. Antimicrobial resistance in E. coli SMS-3-5 is therefore dependant both on determinants acquired from a mobile gene pool likely available to clinical and agricultural pathogens as well, and on specifically adapted multidrug efflux systems. The association of antimicrobial resistance along with APEC virulence genes on pSMS35_130 highlights the risk of promoting the spread of virulence through the extensive use of antibiotics.