JCVI: Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells
 
 
Section Banner

Publications

Citation

Carlo Santoro, Alexey Serov, Lydia Stariha, Mounika Kodali, Jonathan Gordon, Sofia Babanova, Orianna Bretschger, Kateryna Artyushkova, Plamen Atanassov

Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells

Energy & Environmental Science. 2016 May 13; 9(7): 2346-2353.

Abstract

Two iron-based platinum group metal-free catalysts for the oxygen reduction reaction (ORR) were synthesized from novel and low cost organic precursors named niclosamide and ricobendazole. These catalysts have been characterized, incorporated in a gas diffusional electrode and tested in “clean” conditions as well as in operating microbial fuel cell (MFC) for 32 days. Both catalysts demonstrated unprecedented performance yielding a power density 25% higher than that of platinum (Pt) and roughly 100% higher than activated carbon (AC) used as a control. Durability tests were performed and showed that Pt-based cathodes lost their activity within the first week of operation, reaching the level of the supporting AC-based electrode. Fe–ricobendazole, however, demonstrated the highest performance during the long-term study with a power density of 195 ± 7 μW cm−2 (day 2) that slightly decreased to 186 ± 9 μW cm−2 at day 29. Fe–niclosamide also outperformed Pt and AC but the power density roughly decreased with 20% for the 32 days of the study. Accelerated poisoning test using S2− as pollutant showed high losses in activity for Pt. Fe–niclosamide suffered higher losses compared to Fe–ricobendazole. Importantly, Fe–ricobendazole represents a 55-fold cost reduction compared to platinum.