JCVI: Nrg-1 Belongs to the Endothelial Differentiation Gene Family of G Protein-coupled Sphingosine-1-phosphate Receptors
 
 
Section Banner

Publications

Citation

Malek, R. L., Toman, R. E., Edsall, L. C., Wong, S., Chiu, J., Letterle, C. A., Van Brocklyn, J. R., Milstien, S., Spiegel, S., Lee, N. H.

Nrg-1 Belongs to the Endothelial Differentiation Gene Family of G Protein-coupled Sphingosine-1-phosphate Receptors

J Biol Chem. 2001 Feb 23; 276(8): 5692-9.

PubMed Citation

Abstract

The previously cloned rat nerve growth factor-regulated G protein-coupled receptor NRG-1 (Glickman, M., Malek, R. L., Kwitek-Black, A. E., Jacob, H. J., and Lee N. H. (1999) Mol. Cell. Neurosci. 14, 141-52), also known as EDG-8, binds sphingosine-1-phosphate (S1P) with high affinity and specificity. In this paper we examined the signal transduction pathways regulated by the binding of S1P to EDG-8. In Chinese hamster ovary cells heterologously expressing EDG-8, S1P inhibited forskolin-induced cAMP accumulation and activated c-Jun NH2-terminal kinase. Surprisingly, S1P inhibited serum-induced activation of extracellular regulated protein kinase 1 and 2 (ERK1/2). Treatment with pertussis toxin, which ADP-ribosylates and inactivates G(i), blocked S1P-mediated inhibition of cAMP accumulation, but had no effect on c-Jun NH2-terminal kinase activation or inhibition of ERK1/2. The inhibitory effect of S1P on ERK1/2 activity was abolished by treatment with orthovanadate, suggesting the involvement of a tyrosine phosphatase. A subunit selective [35S] guanosine 5'-3-O-(thio)triphosphate binding assay demonstrates that EDG-8 activated G(i/o) and G12 but not Gs and G(q/11) in response to S1P. In agreement, EDG-8 did not stimulate phosphoinositide turnover or cAMP accumulation. The ability of S1P to induce mitogenesis in cells expressing the EDG-1 subfamily of G protein-coupled receptors is well characterized. In contrast, S1P inhibited proliferation in Chinese hamster ovary cells expressing EDG-8 but not empty vector. The antiproliferative effect, like S1P-mediated ERK1/2 inhibition, was orthovanadate-sensitive and pertussis toxin-insensitive. Our results indicate that EDG-8, a member of the EDG-1 subfamily, couples to unique signaling pathways.