AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus.

You are here

Authors: Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, He C
Title: AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus.
Citation: Journal of the American Chemical Society. 2012-01-11; 134.1: 305-14.
Abstract:
Oxygen sensing and redox signaling significantly affect bacterial physiology and host-pathogen interaction. Here we show that a Staphylococcus aureus two-component system, AirSR (anaerobic iron-sulfur cluster-containing redox sensor regulator, formerly YhcSR), responds to oxidation signals (O(2), H(2)O(2), NO, etc) by using a redox-active [2Fe-2S] cluster in the sensor kinase AirS. Mutagenesis studies demonstrate that the [2Fe-2S] cluster is essential for the kinase activity of AirS. We have also discovered that a homologue of IscS (SA1450) in S. aureus is active as a cysteine desulfurase, which enables the in vitro reconstitution of the [2Fe-2S] cluster in AirS. Phosphorylation assays show that the oxidized AirS with a [2Fe-2S](2+) cluster is the fully active form of the kinase but not the apo-AirS nor the reduced AirS possessing a [2Fe-2S](+) cluster. Overoxidation by prolonged exposure to O(2) or contact with H(2)O(2) or NO led to inactivation of AirS. Transcriptome analysis revealed that mutation of airR impacts the expression of ~355 genes under anaerobic conditions. Moreover, the mutant strain displayed increased resistance toward H(2)O(2), vancomycin, norfloxacin, and ciprofloxacin under anaerobic conditions. Together, our results show that S. aureus AirSR is a redox-dependent global regulatory system that plays important roles in gene regulation using a redox active Fe-S cluster under O(2)-limited conditions.
PMID: 22122613