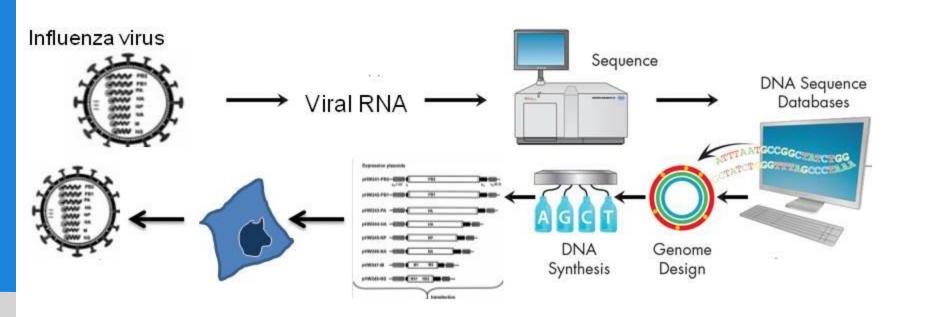
Synthetic Genomics and Its Application to Viral Infectious Diseases


Timothy Stockwell (JCVI) David Wentworth (JCVI)

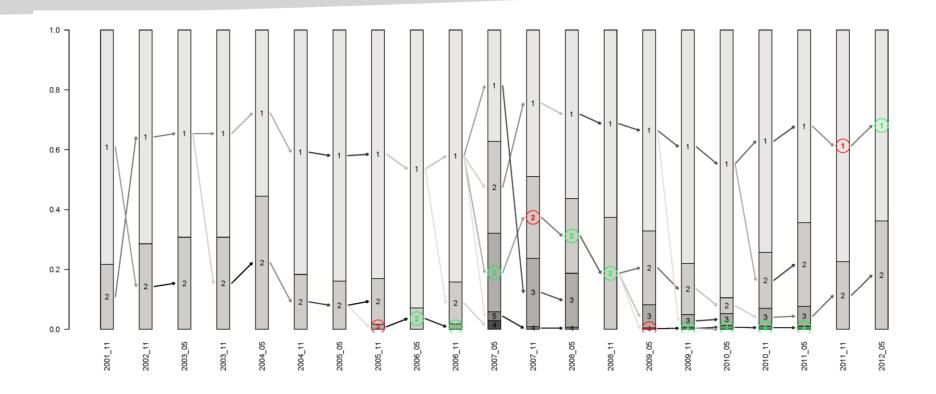
Outline

- Using informatics to predict drift (strain selection)
- Synthetic Genomics: Preparedness (NIH/NIAID)
- Rapid Response to emerging viruses

(BARDA/Novartis/SGVI)

Influenza vaccines could be great if:

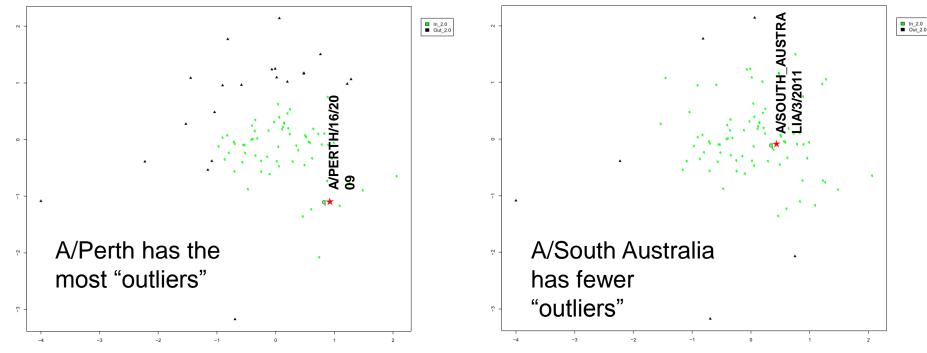
- Improve strain prediction
 - -> Bioinformatics
- Existing vaccine candidates on the shelf
 - Synfluenza
- Speed production
 - Rapid response


Vaccine Bioinformatics

- What should go into a vaccine?
 - Track the viral evolution
 - Determine/predict vaccine candidates protection
 - Combine the information

Tracking the flu over time

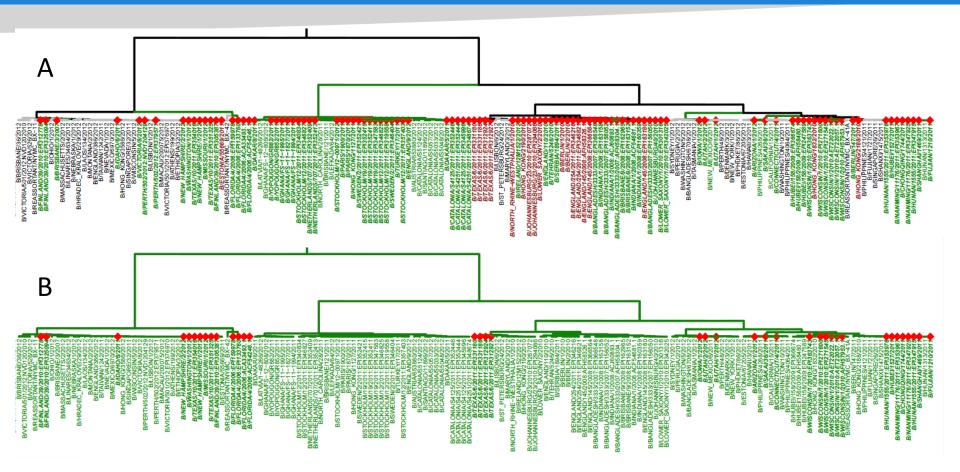
Analysis of FluB in September of 2012, showing the growth of a new group of viruses (2) that were different from the vaccine strain group (1).


Vaccine Informatics

- Based on what types of flu viruses are circulating, and how the viruses are evolving, what should go into a vaccine?
- Track the flu
- Determine how well vaccine candidates might protect against the viruses in circulation
- Combine the information

Predicting how well vaccines should work against other viruses

Antigenic distancing – based on "distances", try to "plot" everything



Then see if you can find a candidate virus that "covers" the most.

J. Craig Venter

NSTI

Putting it all together

Analysis of two vaccine candidates, the current vaccine at the time (A) and a alternative candidate (B) selected by algorithm as providing better predicted protection against circulating strains. J. Craig Venter[®]

INSTITUTE

Synthetic Genomics Tools

RESEARCHARTICLE

Complete Chemical Synthesis, Assembly, and Cloning of a *Mycoplasma genitalium* Genome

PNAS

Daniel G. Gibson, Gwynedd A. Bende Holly Baden-Tillson, Jayshree Zaveri, Ti Mikkel A. Algire, Chuck Merryman, Lei Clyde A. Hutchison III, Hamilton O. Smi genome, we needed to establish convenient and reliable methods for the assembly and cloning of much large synthesis and assembly. The native \$80,076-byl. *Qostalating genome* sequence (*Mycoplasma genitalium* G37 ATCC 33530) genomic sequence, accession no. 143967) (*J*) was partitioned into 101 cassette of approximately 5 to 7 kb in length (Fig. 1) that were individually synthesized, verified by sequencing.

One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic *Mycoplasma genitalium* genome

Daniel G. Gibson^{a,1}, Gwynedd A. Benders^b, Kevin C. Axelrod^a, Jayshree Zaveri^a, Mikkel A. Algire^a, Monzia Moodie^a, Michael G. Montague^a, J. Craig Venter^a, Hamilton O. Smith^a, and Clyde A. Hutchison III^{b,1}

^aThe J. Craig Venter Institute, Synthetic Biology Group, Rodoville, MD 20850 and ^bThe J. Craig Venter Institute, Synthetic Biology Group, San Diego, CA 92121

Enzymatic assembly of DNA molecules up to several hundred kilobases

Daniel G Gibson¹, Lei Young¹, Ray-Yuan Chuang¹, J Craig Venter^{1,2}, Clyde A Hutchison III² & Hamilton O Smith²

Elements for yeast propagation and genome transplantation BssH II Ascl WM4 BssH1 1.077.947 Oligonucleotide Synthesizer Oligonucleotides 200,00 1,080 bp cassettes (1,078) Assemble109X) 10,080 bp assemblies (109) -800.000 Assemble 11X) 100,000 bp assemblies (11) (Assemble 1X) Ascl 1,077,947 bp WM2 BssH II BssH BssH II Ascl WM1 BssHI

Contributed by Clyde A. Hute

We previously reported

myces cerevisiae by reco

ments to produce a 592-k

demonstrating assembly

greatly simplifies the ass

lapping fragments in a sit

synthetic and natural fra

Mycoplasma genitalium

overlapping DNA molecules and then incubated at 50 °C for as few as 15 min (Online Methods). This approach dramatically simplifies the construction of large DNA molecules from constituent parts. Exonucleases that recess double-stranded DNA from 5' ends will not compete with polymerase activity. Thus, all enzymes required for DNA assembly can be simultaneously active in a single isothermal reaction. Furthermore, circular products can be enriched as they are not processed by any of the three enzymes in the reaction. We optimized a 50 °C isothermal assembly system using the activities of the 5' T5 exonuclease (Epicentre), Phusion DNA polymerase (New England Biolabs (NEB) and Tag DNA ligase (NEB) (**Fig. 1**). Tag DNA polymerase (AEB) and bown), but the latter

Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides

Daniel G. Gibson*

Here it is demonstrated th

myces cerevisiae can take

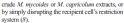
least 38 overlapping singl

synthetic DNA molecules.

ABSTRACT

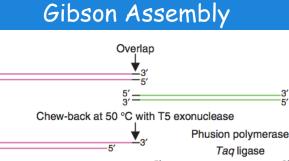
n method for

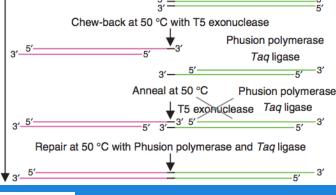
The J. Craig Venter Institute, Synthetic Biology Group, 9704 Medical Center Drive, Rockville, MD 20850, USA


Received January 1, 2009; Revised August 1, 2009; Accepted August 4, 2009

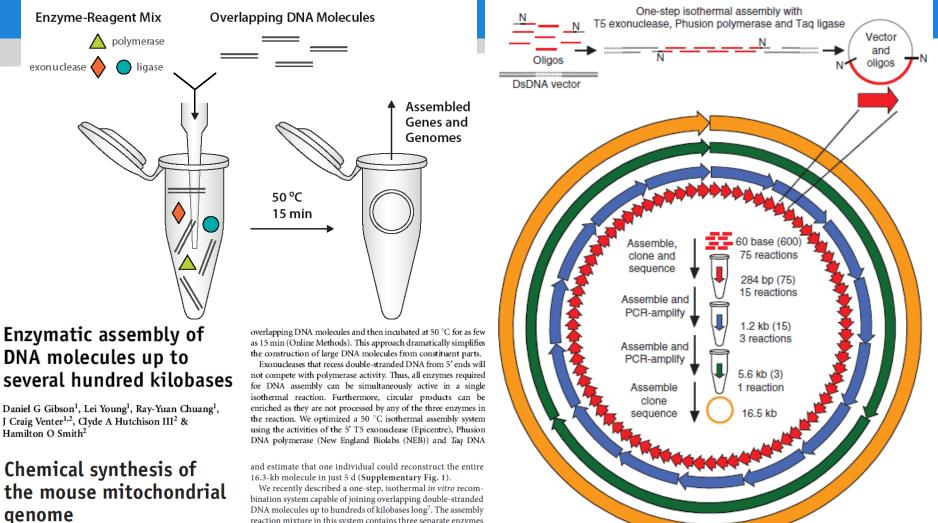
RESEARCHARTICLE

otides and a linear doubletransformation event. Thes overlap by as few as 200 nucleotides could be a by a Chemically Synthesized Genome


Daniel G. Gibson,¹ John I. Glass,¹ Carole Lartigue,¹ Vladimir N. Noskov,¹ Ray-Yuan Chuang,¹ Mikkel A. Algire,¹ Gwynedd A. Benders,² Michael G. Montague,¹ Li Ma,¹ Monzia M. Moodie,¹ Chuck Merzyman,¹ Sanjay Vashee¹, Radha Krishnakumar,¹ Naryar Asaad-Garcia,¹ Cynthia Andrews-Pfannkoch,¹ Evgeniya A. Denisova,¹ Lei Young,¹ Zhi-Qing Qi,¹ Thomas H. Segall-Shapiro,¹ Christopher H. Calvey,¹ Prashanth P. Parmar,¹ Clyde A. Hutchison III,² Hamilton O. Smith,² J. Craig Venter^{1,2}*


We report the design, synthesis, and assembly of the 1.08—mega-base pair Mycoplasm mycoides [CVI-spn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new M. mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including "watermark" sequences and other designed gene deteitons and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous elf-replication.

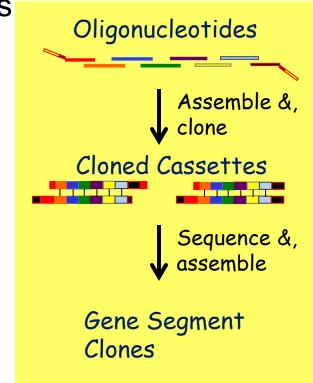
We now have combined all of our previously established procedures and report the synthesis, assembly, cloning, and successful transplantation of the 1.08-Mbp *M. mycoides* JCVI-syn1.0 genome, to create a new cell controlled by this synthetic genome.


Synthetic genome design. Design of the M. mycoides ICVI-syn1.0 genome was based on the highly accurate finished genome sequences of two laboratory strains of M. mycoides subspecies capri (5M12 (8, 9, 11). One was the genome donor used by Lartigue et al. [GenBank accession CP001621] (10). The other was a strain created by transplantation of a genome that had been cloned and engineered in yeast, YCgMmycl.1-xypeIInes [GenBank accession CP001668] (8). This project was critically dependent on the accuracy of these sequences. Although we believe that both finished M. mycoides genome sequences are reliable. there are 95 sites at which they differ We

Rapid in vitro recombination of ssDNA and dsDNA

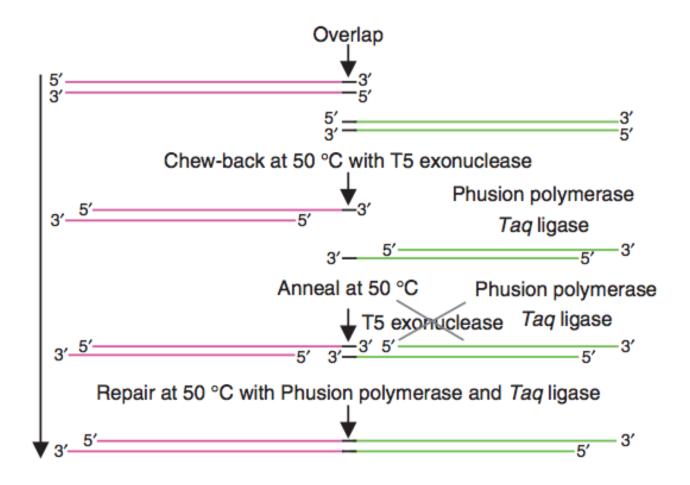
J. Craig Venter

INSTITUTE

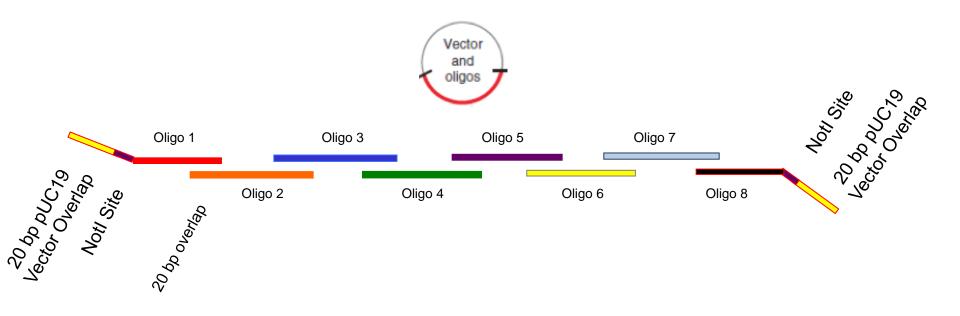

Daniel G Gibson¹, Hamilton O Smith², Clyde A Hutchison III², J Craig Venter^{1,2} & Chuck Merryman¹

We describe a one-step, isothermal assembly method for synthesizing DNA molecules from overlapping oligonucleotides. The method cycles between *in vitro* recombination and amplification until the desired length is reached. As a DNA molecules up to hundreds of kilobases long?. The assembly reaction mixture in this system contains three separate enzymes (T5 exonuclease, Phusion polymerase and *Taq* ligase) that work in harmony to join multiple DNA fragments. In a typical reaction the assembly is accomplished in as few as 15 min. This method is robust and amenable to automation. For these reasons, we adapted it for assembly beginning at the oligo level. We optimized several parameters including the number of oligos used in a single reaction, their length, the amount of overlap, orientation, oligo concentration in the reaction, reaction temperature and reaction time (**Supplementary Tables 1–9** and

Synfluenza Project Details


NIAID project to create ~1000 HA's and NA's

- 12 host subtype combinations
- Span sequence diversity (past 5 years)
 - Human H1N1pdm, H1N1, H3N2, Influenza B
 - Avian H5N1, H7N3, H7N7, H9N2
 - Swine H1N1, H1N2, H3N1, H3N2
- Algorithms to maximize reuse of oligos/cassettes and minimize costs
 - Each molecule made from 7 (HA) or 5 (NA) cassettes (~350bp)
 - Each cassette is made from 8 oligos (~65 bp)
 - Designs based on GenBank sequences with consensus UTRs



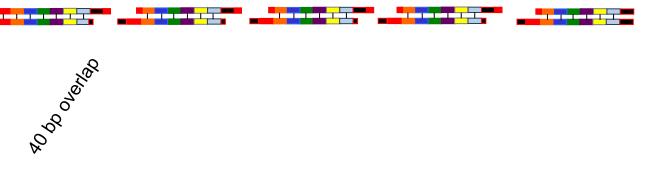
Gibson Assembly

J. Craig Venter

Assembling a Cassette

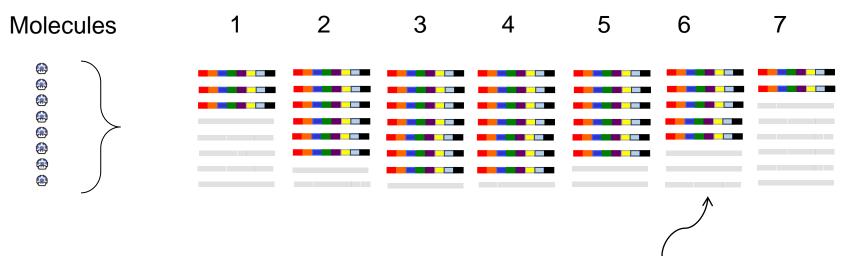
Oligos are 59-72 bp

Cassettes are 335-401 bp



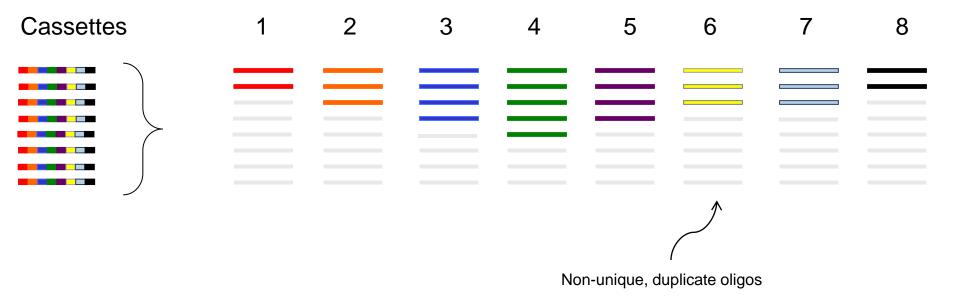
Assembling a Flu Molecule

HA (7 Cassettes) 1716-1885 bp (ungapped)

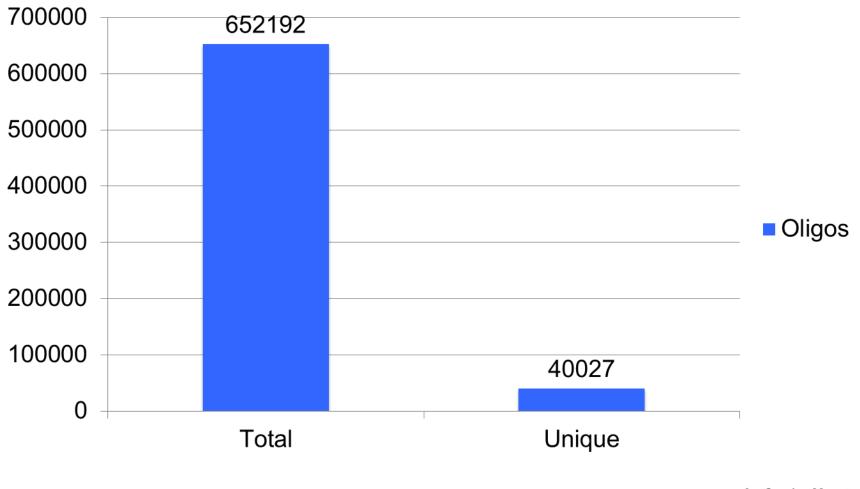

NA (5 Cassettes) 1374-1560 bp (ungapped)

Cassette Design

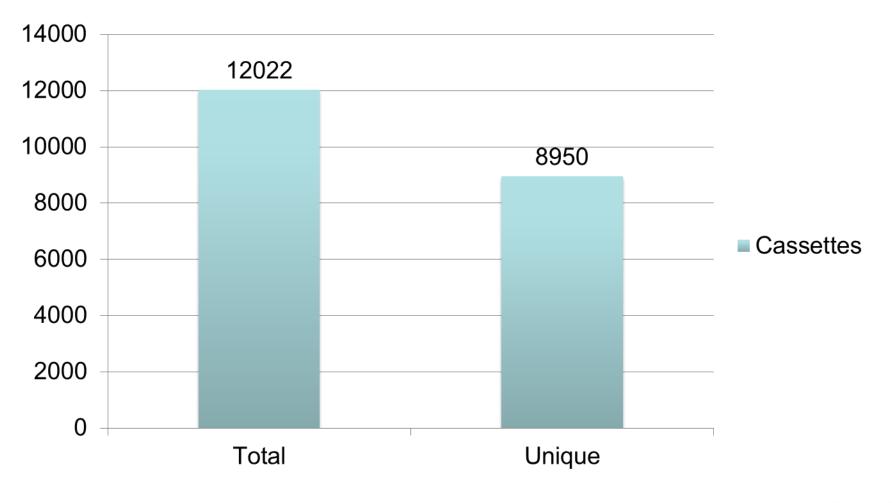
Only 1 copy of each unique cassette is made for each Host, Subtype, Segment & Position (e.g. Avian H5N1 HA)



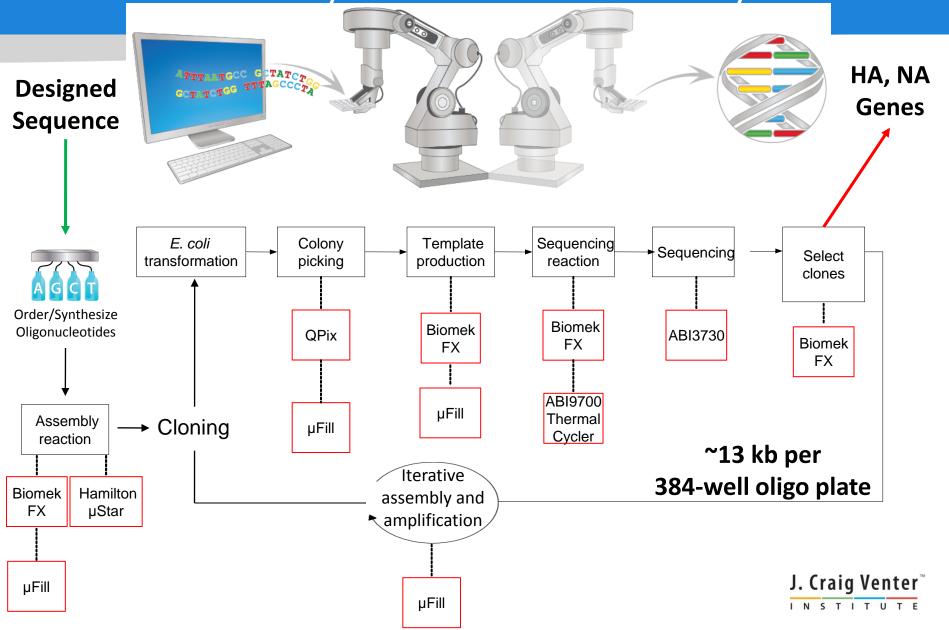
Non-unique, duplicate cassettes


Oligo Design

Only 1 copy of each unique oligo is made for each Host, Subtype, Segment, Cassette, & Position



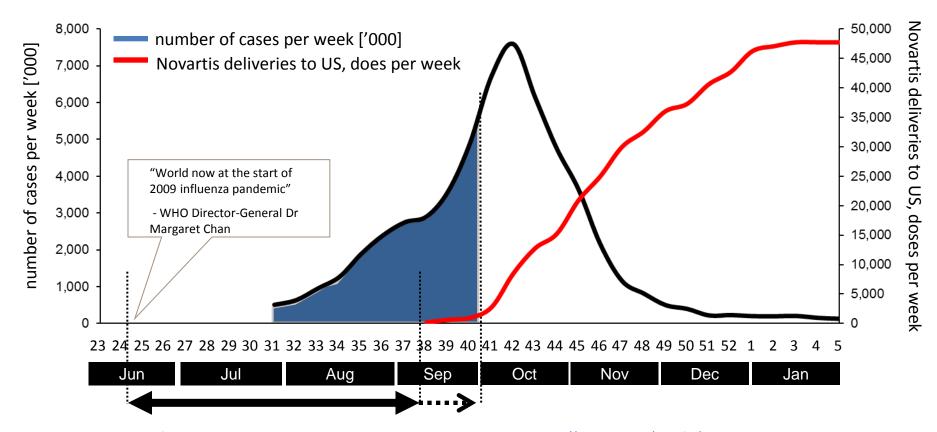
Oligo Savings


J. Craig Venter

Cassette Savings (Initial 1000 HA & NA)

HA's and NA's Constructed Via Automated DNA Synthesis and Assembly

Project Breakdown


				Unique			Intial 1000	Intial 1000
Host	Subtype	Segment	Molecules	Cassettes	Unique Oligos	Molecules	Unique Cassettes	Unique Oligos
AVIAN	H5N1	HA	992	2982	5913	289	1629	4318
AVIAN	H5N1	NA	874	1848	3729	322	1287	3111
AVIAN	H7N3	HA	84	232	815	16	108	586
AVIAN	H7N3	NA	36	5 101	. 408	11	53	286
AVIAN	H7N7	HA	28	3 128	564	14	95	492
AVIAN	H7N7	NA	31	. 103	478	12	60	349
AVIAN	H9N2	HA	273	1167	3822	148	906	3427
AVIAN	H9N2	NA	160) 568	3 2446	101	470	2297
HUMAN	FLUB	HA	363	659	1158	13	85	348
HUMAN	FLUB	NA	487	602	1030	64	240	567
HUMAN	H1N1	HA	829	1528	3 2220	92	441	947
HUMAN	H1N1	NA	849	1065	5 1546	63	238	549
HUMAN	H1N1PDM	HA	3103	2149	2636	171	519	977
HUMAN	H1N1PDM	NA	2860) 1259	1557	121	297	514
HUMAN	H3N2	HA	1058	3 1660) 2322	142	609	1181
HUMAN	H3N2	NA	1050) 1330) 1762	187	576	1043
PORCINE	H1N1	HA	88	378	1685	42	282	1493
PORCINE	H1N1	NA	81	. 255	1082	40	180	929
PORCINE	H1N2	HA	67	290) 1452	36	241	1380
PORCINE	H1N2	NA	72	226	5 1071	37	181	1009
PORCINE	H3N1	НА	3	14	111	2	14	111
PORCINE	H3N1	NA	2	. 10) 80	2	10	80
PORCINE	H3N2	HA	69) 319	1233	41	260	1139
PORCINE	H3N2	NA	63	216	i 907	36	169	796

J. Craig Venter

INSTITUTE

Influenza Vaccine: The Need for Faster Vaccine Development

The 2009 H1N1 pandemic confirmed everyone's fears –close to 40% of cases occurred in a time when no meaningful vaccine quantities were available

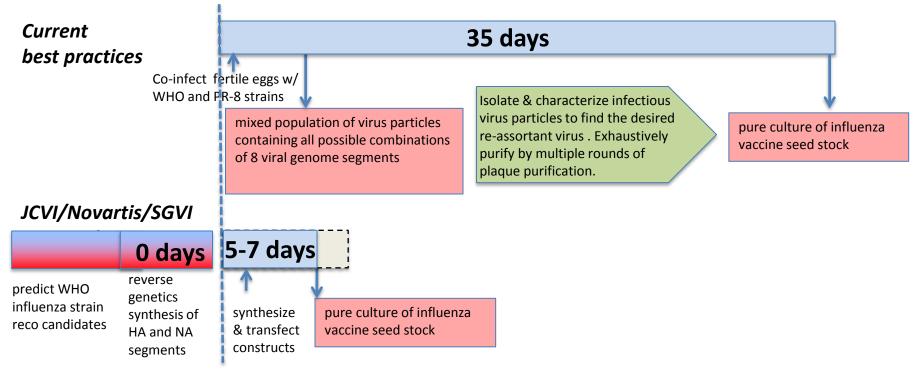
Data provided courtesy of Phil Dormitzer at Novartis Vaccines & Diagnostics. Source: source is: <u>http://www.cdc.gov/h1n1flu/estimates_2009_http1.http</u> Wenter <u>http://www.cdc.gov/flu/weekly/index.htm</u>; As of Jan16, 2010 the CDC estimated that about 57 million people are infected with 2009 H1N1. <u>weekly data on</u> influenza positive tests reported to CDC by U.S. WHO/ NREVSS collaborating laboratories applied to CDC estimate to arrive at the weekly estimates for number **T E** of cases in the US.

Speeding Vaccine Seeds

A BARDA-funded collaboration between Novartis, Synthetic Genomics Vaccines Inc. (SGVI)/J. Craig Venter Institute (JCVI)

- Rapidly synthesize flu gene segments (HA and NA)
- Rescue recombinant viruses with optimized flu backbone

Milestone 1 (Sept. 2011): Demonstrate virus rescue within 7 days of receiving HA and NA sequence information

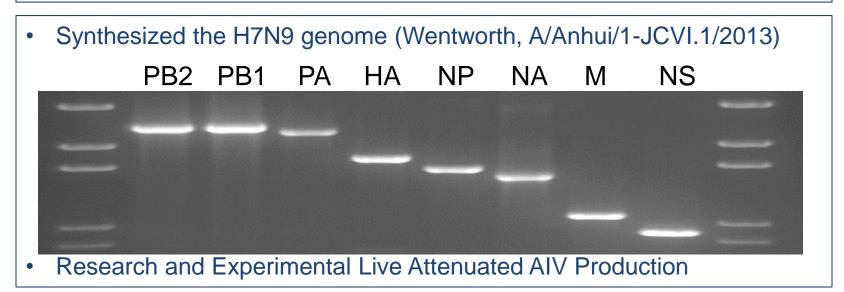

Status – Milestone surpassed We were able to confirm rescue of an H7N9 virus within 5 days of initiating the process

Slide Modified from Peter Mason, Novartis

Accelerating Flu Vaccine Development

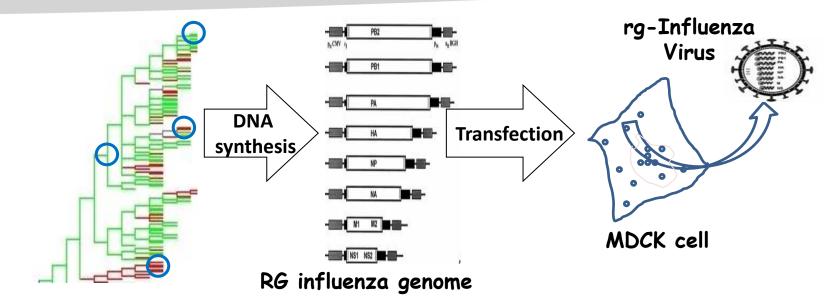
t = 0 WHO releases influenza strain recommendation & biological material

Summary of status of development and availability of avian influenza A(H7N9) candidate vaccine viruses 10 May 2013 World Health Organization Parent virus A/shanghai/2/2013 Synthetic HA&NA A/Anhui/1/2013 Type of virus or NIBRG-267* reassortant * These are too we the finished and must be handled under Bold and and the second and the sec These are potential candidate vaccine viruses i.e. full characterization and must be handled under 853 contained and the second and the secon Developing institute Institutes contact details for candidate vaccine viruses orders/information: Available NBSC: WHO CS: <u>Standards and sold and s</u> from NIBSC: COC, USA NIBSC, UK WHO CCS NIBSC, UK for Beneral enquiries, please contact Bisrs-whoholowho.int ther candidate vaccine viruses and potency testing reagents inlage tested


JCVI/SGI/Novartis synthesized A/Shanghai/2/2013 H7N9 Virus now being distributed by CDC

Potential H7N9 vaccine viral seed stocks are being

Emerging Viral Genome Synthesis


- Identified unique H7N9 virus in people in late March
- Novel subtype for humans
 - Antigenic shift -> Pandemic potential
- Sequence of first viruses available April 1
- 135 cases to date

- Bat influenza
- Coronaviruses: MERS, HKU1
- Morbillivirus
- Rhinovirus

Summary

- <u>Synthetic genomics</u> create gene segments (BARDA/Novartis) or pre-existing gene segments could be used (synfluenza)
- **Rescue vaccine pre-seeds** 6:2 vaccine seeds (TIV, LAIV)
 - Pre-existing stocks ?
- Engineered complete genomes as LAIVs?

These projects* have been funded with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services through the Genomic Sequencing Centers for Infectious Diseases.

* Vaccine Informatics funded by HHS.

Synfluenza Summary

- Purpose:
 - Develop a technical capability to generate and stockpile synthetic DNA encoding influenza gene segment, which could be used to produce virus seeds stocks.
- Deliverable
 - Library of ~1000 sequence verified HA & NA genes
 - Available through the Biodefense and Emerging Infections Research Resource Program (BEI)
- Synthetic gene segment generation
 - Gibson in-vitro assembly
 - Assembly uses automated robotic systems
 - Enables construction of an extensive library of influenza genes
 - Potential to use cassettes in the future for new viruses
- Library of clones
 - Vaccine seeds
 - Diagnostics
 - Basic Research

