ACS synthetic biology. 2023-06-16; 12.6: 1616-1623.

Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium

Sakai A, Jonker AJ, Nelissen FHT, Kalb EM, van Sluijs B, Heus HA, Adamala KP, Glass JI, Huck WTS

PMID: 37278603


Cell-free expression (CFE) systems are fundamental to reconstituting metabolic pathways toward the construction of a synthetic cell. Although an -based CFE system is well-established, simpler model organisms are necessary to understand the principles behind life-like behavior. Here, we report the successful creation of a CFE system derived from JCVI-syn3A (Syn3A), the minimal synthetic bacterium. Previously, high ribonuclease activity in Syn3A lysates impeded the establishment of functional CFE systems. Now, we describe how an unusual cell lysis method (nitrogen decompression) yielded Syn3A lysates with reduced ribonuclease activity that supported expression. To improve the protein yields in the Syn3A CFE system, we optimized the Syn3A CFE reaction mixture using an active machine learning tool. The optimized reaction mixture improved the CFE 3.2-fold compared to the preoptimized condition. This is the first report of a functional CFE system derived from a minimal synthetic bacterium, enabling further advances in bottom-up synthetic biology.