Gupta J, Rathour R, Dupont CL, Kaul D, Thakur IS

Genomic insights into waste valorized extracellular polymeric substances (EPS) produced by Bacillus sp. ISTL8.

Environmental research. 2020-10-16; 192.110277.

The present study discusses the genomic analysis of Bacillus sp. ISTL8 along with the production of EPS (Extracellular polymeric substances) using carbofuran, a toxic carbamate pesticide. Bacillus strain was isolated from landfill soil and evaluated for high growth rates and EPS production. One strain, renamed ISTL8 grew on a broad range of carbon sources, including toxic carbofuran, while producing copious EPS. Growth assays verified the strain to be thermophilic, low salt tolerant, and with a preference for neutral pH. SEM (Scanning Electron Microscopy) was used for morphological characterization of the EPS while the monomeric composition, bonding patterns and functional groups were deduced by GC-MS (Gas Chromatography-Mass Spectrometry), H and C NMR (Nuclear Magnetic Resonance) and FTIR (Fourier Transform Infrared Spectroscopy). The production of EPS using carbofuran (carbamate pesticide) as a carbon source was found to be 6.20 ± 0.29 g L containing 61.17% w/w carbohydrates, 29.72% w/w proteins and 6.11% w/w lipids (of dry EPS). The potential cytotoxicity of EPS was evaluated with 3- (4,5-dimethyl thiazol-2-Yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and found non-toxic (2.25%). WGS (Whole genome sequencing) was performed for the strain Bacillus sp. ISTL8 producing EPS; an array of genes putatively involved in the EPS production were identified in several different genomic locations, guiding potential genetic manipulation studies in the future. The results highlight the potency of a bacterial isolate Bacillus sp. ISTL8 to produce non-cytotoxic EPS using carbofuran that can be further harnessed for environmental and commercial applications. Additionally, WGS revealed an array of EPS specific genes which can be effectively engineered for much enhanced production.

PMID: 33069701