Proceedings of the National Academy of Sciences of the United States of America. 2020-02-11; 117.6: 3053-3062.

Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging

Hou YC, Yu HC, Martin R, Cirulli ET, Schenker-Ahmed NM, Hicks M, Cohen IV, J├Ânsson TJ, Heister R, Napier L, Swisher CL, Dominguez S, Tang H, Li W, Perkins BA, Barea J, Rybak C, Smith E, Duchicela K, Doney M, Brar P, Hernandez N, Kirkness EF, Kahn AM, Venter JC, Karow DS, Caskey CT

PMID: 31980526


Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia ( = 24), cardiomyopathy, arrhythmia, and other cardiac diseases ( = 42), and diabetes and endocrine diseases ( = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.